

Algorithms & Analysis

Kuan-Yu Chen (陳冠宇)

2019/02/20 @ TR-310-1, NTUST

Algorithm

- **Algorithm:** Any well-defined computation procedure that takes some value, or set of values, as input and produces some value, or set of values, as output
 - Tool for solving well specific computational problem
 - Sorting
 - Input: A sequence of n numbers $\{a_1, a_2, \dots, a_n\}$
 - Output: A permutation of the input sequence such that $\{a'_1, a'_2, \dots, a'_n\}$
- An algorithm is said to be ***correct*** if for every input, it halts with the correct output
 - A correct algorithm ***solves*** the given computational problem

Sorting

- Sorting means arranging the elements of an array so that they are placed in some relevant order which may be either **ascending** or **descending**
- A sorting algorithm is defined as an algorithm that puts the elements of a list in a certain order, which can be either **numerical** order, **lexicographical** order, or **any user-defined** order
 - Bubble, Insertion, Selection, Tree
 - Merge, Quick, Radix, Heap, Shell

Insertion Sort.

- Insertion sort is a very simple sorting algorithm in which the sorted array (or list) is built one element at a time
- The procedure!
 - The array of values to be sorted is divided into two sets
 - One stores sorted values
 - Another contains unsorted values
 - The sorting algorithm will proceed until there are no elements in the unsorted set

Example

- Please sort a given data array by using insertion sort

39	9	45	63	18	81	108	54	72	36
----	---	----	----	----	----	-----	----	----	----

39	9	45	63	18	81	108	54	72	36
----	---	----	----	----	----	-----	----	----	----

A[0] is the only element in sorted list

9	39	45	63	18	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 1)

9	39	45	63	18	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 2)

9	39	45	63	18	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 3)

9	18	39	45	63	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 4)

9	18	39	45	63	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 5)

9	18	39	45	63	81	108	54	72	36
---	----	----	----	----	----	-----	----	----	----

(Pass 6)

9	18	39	45	54	63	81	108	72	36
---	----	----	----	----	----	----	-----	----	----

(Pass 7)

9	18	39	45	54	63	72	81	108	36
---	----	----	----	----	----	----	----	-----	----

(Pass 8)

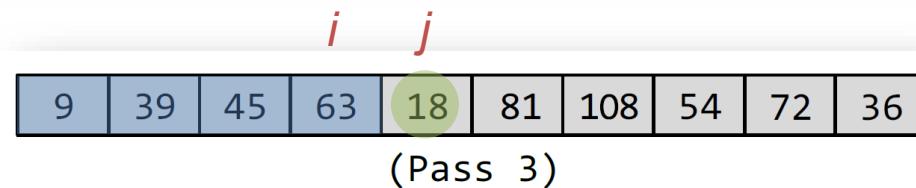
9	18	36	39	45	54	63	72	81	108
---	----	----	----	----	----	----	----	----	-----

(Pass 9)

Insertion Sort..

INSERTION-SORT(A)

```
1  for  $j = 2$  to  $A.length$ 
2       $key = A[j]$ 
3          // Insert  $A[j]$  into the sorted sequence  $A[1..j-1]$ .
4       $i = j - 1$ 
5      while  $i > 0$  and  $A[i] > key$ 
6           $A[i + 1] = A[i]$ 
7           $i = i - 1$ 
8       $A[i + 1] = key$ 
```



Analyzing Algorithms

- Analyzing an algorithm has come to mean predicting the **resources** that the algorithm requires
 - Memory, communication bandwidth, or computer hardware are of primary concern
 - Most often we want to measure the computational time
- The **running time** of an algorithm on a particular input is the number of primitive operations or steps executed
 - It is convenient to define the notion of step so that it is as machine-independent as possible
 - One line may take a different amount of time than another line
 - We shall assume that each execution of the i^{th} line takes time c_i , where c_i is a constant

Running Time of Insertion Sort.

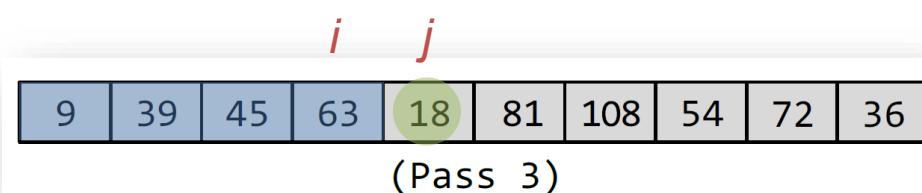
- The running time of the algorithm is the sum of running times for each statement executed
 - A statement that takes c_i to execute and executes n times will contribute $c_i \times n$ to the total running time
- To compute $T(n)$, the running time of insertion sort on an input of n values, we sum the products of the $\boxed{\text{cost}}$ and $\boxed{\text{times}}$ for each statement

INSERTION-SORT(A)	<i>cost</i>	<i>times</i>
1 for $j = 2$ to $A.length$	c_1	n
2 $key = A[j]$	c_2	$n - 1$
3 // Insert $A[j]$ into the sorted sequence $A[1 \dots j - 1]$.	0	$n - 1$
4 $i = j - 1$	c_4	$n - 1$
5 while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^n t_j$
6 $A[i + 1] = A[i]$	c_6	$\sum_{j=2}^n (t_j - 1)$
7 $i = i - 1$	c_7	$\sum_{j=2}^n (t_j - 1)$
8 $A[i + 1] = key$	c_8	$n - 1$

Running Time of Insertion Sort..

INSERTION-SORT(A)	$cost$	$times$
1 for $j = 2$ to $A.length$	c_1	n
2 $key = A[j]$	c_2	$n - 1$
3 // Insert $A[j]$ into the sorted sequence $A[1..j - 1]$.	0	$n - 1$
4 $i = j - 1$	c_4	$n - 1$
5 while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^n t_j$
6 $A[i + 1] = A[i]$	c_6	$\sum_{j=2}^n (t_j - 1)$
7 $i = i - 1$	c_7	$\sum_{j=2}^n (t_j - 1)$
8 $A[i + 1] = key$	c_8	$n - 1$

- $n = A.length$
- t_j denote the number of times the **while** loop test in line 5 is executed for that value of j



Running Time of Insertion Sort...

INSERTION-SORT(A)	<i>cost</i>	<i>times</i>
1 for $j = 2$ to $A.length$	c_1	n
2 $key = A[j]$	c_2	$n - 1$
3 // Insert $A[j]$ into the sorted sequence $A[1..j - 1]$.	0	$n - 1$
4 $i = j - 1$	c_4	$n - 1$
5 while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^n t_j$
6 $A[i + 1] = A[i]$	c_6	$\sum_{j=2}^n (t_j - 1)$
7 $i = i - 1$	c_7	$\sum_{j=2}^n (t_j - 1)$
8 $A[i + 1] = key$	c_8	$n - 1$

- Consequently, we can obtain:

$$\begin{aligned} T(n) &= c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) \\ &\quad + c_5 \times \sum_{j=2}^n t_j + c_6 \times \sum_{j=2}^n (t_j - 1) \\ &\quad + c_7 \times \sum_{j=2}^n (t_j - 1) + c_8 \times (n - 1) \end{aligned}$$

Running Time of Insertion Sort...

INSERTION-SORT(A)

```

1  for  $j = 2$  to  $A.length$ 
2     $key = A[j]$ 
3    // Insert  $A[j]$  into the sorted
       sequence  $A[1..j-1]$ .
4     $i = j - 1$ 
5    while  $i > 0$  and  $A[i] > key$ 
6       $A[i + 1] = A[i]$ 
7       $i = i - 1$ 
8     $A[i + 1] = key$ 

```

	cost	times
1	c_1	n
2	c_2	$n - 1$
3	0	$n - 1$
4	c_4	$n - 1$
5	c_5	$\sum_{j=2}^n t_j$
6	c_6	$\sum_{j=2}^n (t_j - 1)$
7	c_7	$\sum_{j=2}^n (t_j - 1)$
8	c_8	$n - 1$

$$\begin{aligned}
 T(n) = & c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) \\
 & + c_5 \times \sum_{j=2}^n t_j + c_6 \times \sum_{j=2}^n (t_j - 1) \\
 & + c_7 \times \sum_{j=2}^n (t_j - 1) + c_8 \times (n - 1)
 \end{aligned}$$

- The **best case** occurs if the array is already sorted
 - For each $j = 2, 3, \dots, n$, we then find that $A[i] \leq key$ in line 5 when i has its initial value of $j - 1$
 - Thus, $t_j = 1$ for $j = 2, 3, \dots, n$
 - The running time is:

$$\begin{aligned}
 T(n) &= c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) + c_5 \times (n - 1) + c_8 \times (n - 1) \\
 &= (c_1 + c_2 + c_4 + c_5 + c_8) \times n - (c_2 + c_4 + c_5 + c_8)
 \end{aligned}$$

Running Time of Insertion Sort....

INSERTION-SORT(A)

```

1  for  $j = 2$  to  $A.length$ 
2    key =  $A[j]$ 
3    // Insert  $A[j]$  into the sorted
       sequence  $A[1 \dots j - 1]$ .
4     $i = j - 1$ 
5    while  $i > 0$  and  $A[i] > key$ 
6       $A[i + 1] = A[i]$ 
7       $i = i - 1$ 
8     $A[i + 1] = key$ 

```

	cost	times
1	c_1	n
2	c_2	$n - 1$
3	0	$n - 1$
4	c_4	$n - 1$
5	c_5	$\sum_{j=2}^n t_j$
6	c_6	$\sum_{j=2}^n (t_j - 1)$
7	c_7	$\sum_{j=2}^n (t_j - 1)$
8	c_8	$n - 1$

$$\begin{aligned}
 T(n) = & c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) \\
 & + c_5 \times \sum_{j=2}^n t_j + c_6 \times \sum_{j=2}^n (t_j - 1) \\
 & + c_7 \times \sum_{j=2}^n (t_j - 1) + c_8 \times (n - 1)
 \end{aligned}$$



- The **worst case** occurs if the array is in reverse sorted order
 - We must compare each element $A[j]$ with each element in the entire subarray $A[1, \dots, j - 1]$, and so $t_j = j$ for $j = 2, 3, \dots, n$
 - The running time is:

$$\begin{aligned}
 T(n) = & c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) + c_5 \times \left(\frac{n \times (n + 1)}{2} - 1 \right) \\
 & + c_6 \times \left(\frac{n \times (n - 1)}{2} \right) + c_7 \times \left(\frac{n \times (n - 1)}{2} \right) + c_8 \times (n - 1) \\
 = & \left(\frac{c_5 + c_6 + c_7}{2} \right) \times n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8 \right) \times n - (c_2 + c_4 + c_5 + c_8)
 \end{aligned}$$

$$\begin{aligned}
 \sum_{j=2}^n j &= \frac{n \times (n + 1)}{2} - 1 \\
 \sum_{j=2}^n (j - 1) &= \frac{n \times (n - 1)}{2}
 \end{aligned}$$

Running Time of Insertion Sort.....

- To sum up,

- For the best case

$$\begin{aligned}T(n) &= c_1 \times n + c_2 \times (n - 1) + c_4 \times (n - 1) + c_5 \times (n - 1) + c_8 \times (n - 1) \\&= (c_1 + c_2 + c_4 + c_5 + c_8) \times n - (c_2 + c_4 + c_5 + c_8)\end{aligned}$$

- We can express this running time as $a \times n + b$ for constants a and b that depend on the statement costs c_i
 - It is a *linear function* of n

- For the worst case

$$T(n) = \left(\frac{c_5 + c_6 + c_7}{2}\right) \times n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8\right) \times n - (c_2 + c_4 + c_5 + c_8)$$

- We can express this running time as $a \times n^2 + b \times n + c$ for constants a , b and c that depend on the statement costs c_i
 - It is a *quadratic function* of n

Questions?

kychen@mail.ntust.edu.tw